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Abstract-In this paper, we propose a novel architecture for a
soft-output stochastic detector in multiple-input, multiple-output
(MIMO) systems. The stochastic properties of this detector
are studied and derived in this work, and several complexity
reduction techniques are proposed to significantly reduce its
cost from an architecture-implementation perspective. We also
propose an efficient architecture to implement this detector.
Finally, this detector is incorporated into an iterative detection-
decoding structure, and through simulations, it is shown that
the overall frame error rate (FER) performance and complexity
is of the same order as that of the conventional K-best sphere
detector.

I. INTRODUCTION

Multiple-input Multiple-output (MIMO) systems [1] can
achieve both higher reliability and higher data rates compared
to single-antenna wireless systems. Therefore, they have been
extensively used in many different wireless systems, and have
been proposed for current and upcoming wireless standards,
such as cellular networks, IEEE 802.1 In, WiMAX and 3GPP
LTE. In all these standards, broadcasting independent streams
on the antennas, commonly referred to as spatial multiplexing,
plays a significant role in pushing the data rates to support
higher demanding applications, such as video streaming.

Implementing these types of MIMO systems in base stations
and hand-held mobile devices poses a wide range of issues,
among which detection is one of the major challenges. There
has been significant work on architecture-friendly techniques
to reduce the complexity of near-optimum solutions for MIMO
detection [2], [3], [4]. These techniques are all based on
sphere detection, [5], which mimics the maximum-likelihood
(ML) performance. However, there are still inevitable costly
operations associated with those techniques, which consume
a significant portion of the area/power of the wireless system.
In order to avoid some of these computations, a novel ap-
proach has been proposed in [6], which is based on Markov
Chain Monte Carlo (MCMC) technique, and takes a stochastic
approach to reduce the soft detection complexity.

In this paper, we propose a novel stochastic detector which
uses the general Markov chain approach. We show that the
updated distribution is a Gaussian distribution with a running
mean and tractable variance. We further propose various
complexity reduction techniques to efficiently compute the
parameters of the distribution, and propose an architecture
to implement this technique. Our simulation results suggest

that the performance and computational complexity of this
approach is comparable with that of common sphere detection.

This paper is organized as follows: Section II introduces the
system model. Section III introduces the stochastic detector
based on the Markov Chain Monte Carlo (MCMC) technique.
An efficient architecture, suitable for ASIC implementation,
is proposed in section IV. Finally, the simulation results are
presented in section V.

II. SYSTEM MODEL

Let the transmitted vector, s, be an MT x 1 vector with
its complex elements, si, chosen from a set of modulation
constellation with 2MC complex signal points. Then, the MIMO
system model with MT transmit antennas and MR receive
antennas can be described by

y =Hs+-n (1)

where H is the MR X MT complex-valued channel matrix, n is
the MR x 1 complex noise vector, and y is the MR x 1 received
vector. Here, each si, i = 1, .,MT corresponds to Me-length bit
sequence of xis where MC is the number of bits per modulation
symbol. Throughout the paper, we assume that the receiver
has perfect CSI; i.e. the channel matrix, H, is fully known
in the receiver. We are only concerned with full-rate spatial
multiplexing, with MT < MR, which uses all transmit antennas
for transmission.

Figure 1 shows the overall system architecture. The trans-
mitter consists of an outer error correction encoder, e.g. Turbo
or LDPC encoder, of rate R; followed by a constellation
mapper which maps the encoded bits to complex modulation
symbols, e.g. 16-QAM or 64-QAM. The receiver uses an
iterative detection/decoding scheme [7] which is based on
exchanging soft information between detector and soft-in/soft-
out decoder in a feedback loop until reliable decoded bits
are computed. The soft information, typically Log-likelihood
Ratio (LLR), passed from the detection block to the decoding
block is obtained by

LD(Xk3) = ln P[Xk -+iy]
1 y]

(2)

where k= O, ...,MT M -1. This soft information is updated
in the decoder and fed back into detector. Multiple cycles of
exchanging soft information between the detector and decoder
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would eventually lead to more reliable soft information, which
will be used by the decoder, in the last iteration, to hard-decode
more reliably.

MT transmit
antennas code rate R binary

source
constellation = outer information bits

mapper encoder_

H

receivers which try to detect the uncoded data, and achieve
a performance close to optimum, i.e. ML, performance. How-
ever, for a vast majority of current wireless transceivers, the
error correction encoder/decoder pair is a crucial integral
block, see Figure 1; and for such systems, a hard decision
symbol (something sphere detection is built for) is not the
target; rather, soft reliability information should be computed
to aid the decoder in decoding the data successfully.

Therefore, rather than using a technique that was originally
designed for hard detection in uncoded systems and extending
it to coded systems, it is worthwhile to consider a new
approach to computing the soft reliability information.

B. Markov Chain Monte Carlo (MCMC) Technique for List
Generation

In order to generate the list and compute the soft information
of Eq. (3), while avoiding the computationally expensive
sphere detector, a stochastic approach has been proposed in
[6]. In this technique, each transmit antenna symbol is drawn
out of a distribution function.

The algorithm steps for this technique are summarized as
follows:

Fig. 1. MIMO transceiver, iterative detection and decoding at the receiver.

Soft information can be generated using a list of possible
vector candidates. Once this list is generated, LLR values of
Eq. (2) are computed and passed to the decoder [7]:

1 r1 2 '

2 xLLnxk,+1{ G2 I H -Xk*LA [k]

max yH-S 2+X 3
2 x-£xk-X 2 H [k] LA (3)

where L is the list of possible vectors, X[k] is the sub-vector of
x obtained by omitting the k-th bit Xk, LA [k] is the vector of all
a priori probabilities LA for transmitted vector x obtained by
omitting LA (Xk), 62 is the noise variance, Xk,+l is the set of
2M Mc bits of vector x with Xk = + 1, while Xk -1 is similarly
defined.

A. Soft Output Sphere Detector

One straightforward way to generate the list, L in Eq. (3),
is using sphere detection as proposed in [7]. Note that when
using a sphere detector; rather than picking the best candidate,
a list of desirable candidates, i.e. generally the ones with
smaller distances, are chosen and added to the list L. Different
architectures and implementations have been proposed for
such soft sphere detectors in [3], [4] and [8]. They all re-
quire significant pre-processing effort, which usually includes
various channel factorizations, such as QR decomposition or
Cholesky factorication.

It is also worth noting that sphere detection was originally
designed to alleviate the complexity of integer least-squares
problems [5]. Since maximum-likelihood (ML) solution in
the presence of a wireless channel is an integer least-squares
problem, sphere detection is a suitable choice for wireless

Initialize a random s(-Nb);

Forn =-Nb+[lton= Ns:
- Draw sample (n) from P(s2MsT' ,...,SMT
- Draw sample s (n) from P(S2 s(n-1)s(n- ) s(n- l )

- Draw sample sMT} from P(SMT S1** MT -1, Y)

The preceding algorithm can be proceeded in parallel in-
dependent paths, each called one sampler unit; thus, for an
average fixed list size, reducing the delay required to finish the
overall procedure. Furthermore, each sampler would generate
a list of highly correlated candidates; therefore, using multiple
parallel samplers would increase the probability of choosing
from less correlated sets of candidates, which, in turn, would
increase the reliability of the soft information passed to the
decoder. Throughout the paper, we denote the number of
parallel units by N.

III. STOCHASTIC SOFT-OUTPUT MIMO DETECTOR

We show here that assuming additive white Gaussian noise,
all the above probability density functions can be written as
follows,

pdf(n) =-P(s s(ln) s(n) s(n) S(n-1) (nH1

Kexp IY s2Hs

Kexp 1 dYi262 }

1035



IYi-hikSk- hijsj|2
=Kexp {k l

y hikSkI - I:khijs (Y12 h.Sj

= Kexp { 7

IhikSk12 -29{Sklhik(Yi* hs

K2exp{ ih kk k

|hk LY k 2 l

l~~~~~~ii 2
Sk 12

K3 exp 4
2Z2 hik2 (4)

where hi is the i-th row of the channel matrix, H; superscripts
and T indicate scalar conjugate and vector transpose conjugate
respectively, and Kis are proper coefficients to normalize the
distribution at each step.

Thus, the distribution from which the sample is drawn at
each step is a Gaussian random variable with mean, oC, and
variance, 32, given as

hi*k (Yi-: hijsj)
i j7Utc

i 2

i 2

(5)

Fixed Multiplications: Even though the drawn sample
can be any real numbers, they can be mapped to one of
the modulation constellation points so that all the hijsj
multiplications change to shift-add operations.
Avoiding Square roots/divisions: With the current def-
initions of OC and f3 in (5) and (6), division operations
are required at each step to find OC; moreover, to find
f, MT number of square root calculations are required
in the pre-processing stage. To avoid all these calcula-
tions, everything, including the modulation constellation,
should be scaled with a Li hik 2 factor. Therefore, the
constellation points are now defined as

MR
mk = SkE hik 2

i=l
(8)

for each of the k = 1, . .,MT transmit antennas. Therefore,
the new mean and variance to be substituted in (7) are
defined as:

(X/ = hi*M(yiR- hijsj)I
i j7U
MR

P/2 = G2, Ihik 2

i=l
(9)

Note that this scaling depends on the instantaneous
channel realization; however, a significant number of
division/sqrt operations are replaced by less costly ones,
i.e. multiplications. Also, notice that variance has to be
adjusted only once in (9), and then being used as long as
the channel estimates remain the same.

. Iterative Computation of the Mean: To further reduce
the complexity and avoid repeating multiplications, c(x can
be re-written as:

MR MT
( = ,( +EhI:it hijsj (n)

i=l j7k

(6)

Assuming that a Gaussian random variable with zero mean
and variance of one is given in advance, the new random
variable can be obtained from

S(n) = (xi +P x (p}I+j{if{c} +13 x V}, (7)

where 9S } and 3{ } denote the real and imaginary part
operators; and oc are given in Eq. (5) and (6); and (p and v
are two independent samples drawn from the given zero-mean
uni-variance Gaussian distribution.

IV. ARCHITECTURAL CONSIDERATIONS

Note that the mean, Eq. (5), changes in each step. Therefore,
computation of the mean can be quite expensive consisting of
various additions, multiplications and divisions. In this section,
we propose architecture oriented techniques to reduce this
complexity.

Revisiting (5) and (6) suggests the following modifications:

MR MT
- L h*k L hijs,(n+1)
i=: I 1)k

MR MT() +E h* f , (hijsj(-) hijsj(n )
it ki=: I j7Uk

MR MT
() + h*hiy(sy-sj )).

i=1 jftk
(10)

Using (10), the hikhii can be computed in advance and
stored; and can be re-used throughout the sample drawing
steps. The x(sj(n) - (n+l)) term in (10) is basically
a sequence of shift-add operations as all the sis are
constellation points.

Table I summarizes the resource savings through adopt-
ing the aforementioned techniques. The number of parallel
samplers is denoted by N, and the number of iterations is
I=MT (Nb + Ns). In order to compute the operation count,
based on typical FPGA area costs, comparators are assumed to
have unit complexity; adders have twice complexity as that of
comparators; multipliers ten times that of addition; and finally
division and square root to have 4.5 and 3.8 times that of
multipliers, respectively.

1036



TABLE I
OPERATION COUNT COMPARISON BETWEEN THE TWO APPROACHES TO COMPUTE THE MEAN AND VARIANCE IN EQ. (5)/(6) AND EQ. (9)/(10). THE

TOTAL NUMBER IS FOR A 16-QAM, 4 X 4 SYSTEM.

Once cx is computed, drawing the random variables is
straightforward using (7). Figure 2 shows how this can be
accomplished with memory blocks containing the instances
of a zero-mean uni-variance Gaussian distribution with proper

number of occurrence of different samples. The address to
this memory block, which needs to be statistically uniform,
is generated with a conventional linear feedback shift register
(LFSR).
The overall architecture is shown in the same figure. Note

that there are N parallel sampler units, and since they operate
independently of each other, there is no data dependency
between the samplers; thus, they can run in parallel. Each
of these N sampler units generates a list £I. The final list, L,
required to compute Eq. (3), is generated by concatenating all
these £i lists.

Finally, it is worthwhile noting that this architecture utilizes
all the channel instantaneous information, i.e. hijs in Eq.
(9) and (10), to generate the list. However, compared to
sphere detection, it does not require any explicit costly pre-

processing, such as QR decomposition or Cholesky factoriza-
tion to produce a similar list. A more explicit comparison on

the complexity and computation cost is given in section V.

V. SIMULATION RESULTS

For the simulation phase, a 4 x 4 MIMO wireless system is
assumed. The stochastic detector is employed in an iterative
detection-decoding structure, Figure 1, where four outer itera-
tions are performed in the detector/decoder loop. During these
iterations, the updated soft information is handed between the
detector and the decoder. The decoder is a R = 0.5 rate 1944
length LDPC decoder, and is using at most 15 inner iterations

Fig. 2. MCMC architecture assuming N parallel sampler units.

between the variable and check nodes of the decoder. The
detector is simulated with all the simplifications described in
the previous section. The channel matrices are all independent
Rayleigh fading. For the stochastic detector, N= 8 parallel
samplers are assumed, Nb = 5 and Ns = 10, and each has
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Initial stochastic detector based on Reduced stochastic detector based on
(5) and (6) (9) and (10)

comparison 2 lwNI 2 Alw1NI

addition MT (MR - 1) + N.I{8MR(MT - 1) + 4MR + 4} (2MR - 1)MT+ 2MRMT ( 2w - 1 ) + N.I{2MR (MT - 2)}+

N.MT{2MR (MT -1) +2(MR -1)}

square 2MRMT 2MRMT

mult N.I{4MR + 2} 4(I MRMT (MT -1)) +4MRMTN + 2N.I

Division MT + 2N.I 0

Square root MT 0

total number of operations 18K computation operations 1.7K computation operations



at most 20 vectors.

The frame error rate (FER) results comparing the overall
performance of the stochastic detector with the K-best sphere
detectors for both 16-QAM and 64-QAM are presented in
Figure 3.

0 16-QAM, 4X4

K-best SD (K=5)
K-best SD (K= 14)
Stochastic Detector

10 M 1 A (8 Parallel Units)
... ..

wL10-IXX

10> ^ --

VI. CONCLUSION
In this work, we presented a novel architecture for an

MCMC-based stochastic detector which can be used in iter-
ative detector/decoder structures to improve the performance
of wireless MIMO systems, specifically in higher dimension
problems. This architecture enjoys various complexity reduc-
tion techniques, and is suitable for customized ASIC solutions.
The simulation results show that the frame error rate behavior
of this technique is comparable with that of sphere detection.
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Fig. 3. FER results comparing K-best Sphere Detector (SD) with MCMC
for both 16-QAM and 64-QAM systems, assuming four transmit antennas.
LDPC decoder with 15 inner iterations have been used.

The number of operations for different modulation orders
are shown in Figure 4. Note that for each modulation order, the
complexity of K-best technique increases with higher K values
of the K-best sphere detection. The complexity of higher order
modulations is more significant in sphere detection due to
the sorting step required in that strategy. which suggests that
for higher dimension problems, the stochastic approach would
show significant improvement over conventional deterministic
approaches.

Fig. 4. Number of operations for different modulation orders, normalized by
a factor of 105. For the 16-QAM case, Kl and K2 correspond to 5 and 14,
respectively. For 64-QAM and 256-QAM, Kl and K2 correspond to 5 and 10
respectively. Four transmit antennas are assumed.
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