Distributed Protocols for Signal-Scale Cooperation

Christopher Hunter

PhD Defense April 11, 2012

Wireless is broadcast by nature

Spatial Diversity

What if costs outweigh benefits?

Talk Outline

- Making cooperation "cheap"
 - Distributed On-demand Cooperation (DOC)
 - Power-controlled DOC (PDOC)
- Adapting cooperative effort according to benefits and costs of cooperation
 - Distributed Energy-Conserving Cooperation (DECC)

Protocol Design Goals

Make relays smart by teaching them about the network around them

knowing when they can't help

helping, when they can, with just enough power

Decoding Reliability $f(\mathsf{SNR}_{\mathsf{SD}},\mathsf{SNR}_{\mathsf{RD}})$

Adjust relay transmission power

$$T_{\mathsf{R}} = f(\mathsf{SNR}_{\mathsf{SD}}, \mathsf{SNR}_{\mathsf{RD}})$$

 $T_{\rm R} > T_{\rm max}$ don't bother

 $T_{\text{max}} - T_{\text{R}}$ "saved" power

(relative to max)

Adjust relay transmission power

$$T_{\mathsf{R}} = f(\mathsf{SNR}_{\mathsf{SD}}, \mathsf{SNR}_{\mathsf{RD}})$$

$$T_{
m R} > T_{
m max}$$
 don't bother

How can the relay actually learn this information?

$$T_{\text{max}} - T_{\text{R}}$$
 "saved" power

(relative to max)

Adjust relay transmission power

$$T_{\mathsf{R}} = f(\mathsf{SNR}_{\mathsf{SD}}, \mathsf{SNR}_{\mathsf{RD}})$$

Slot I	Slot 2
Transmission	Transmission
	Transmission

- Only cooperates when retransmissions would be needed anyway
- NACKs are a frame of reference for synchronization

- OFDM Cooperative PHY
 - I0MHz of BW
 - Distributed STBC
 - Decode-and-Forward

Solution: Harden packet responses to fabric

P. Murphy, C. Hunter, A. Sabharwal, "Design of a Cooperative OFDM Transceiver," Proc. Asilomar 2009

Power-controlled DOC (PDOC)

Power-controlled DOC (PDOC)

Power-controlled DOC (PDOC)

$$T_{\mathsf{R}} = f(\mathsf{SNR}_{\mathsf{SD}}, \mathsf{SNR}_{\mathsf{RD}})$$

$$T_{\mathsf{R}} = f\left(\mathsf{RSSI}_{\mathsf{SD}}, \mathsf{RSSI}_{\mathsf{RD}}\right)$$

Train this function for the performance of our PHY (offline... only have to do it once)

Source

Relay

Destination

single tap, Rayleigh fading, 1.2km/hr

Key Metric: Energy Efficiency

$$\gamma = \frac{\text{\# of bits transmitted} + \text{received}}{\text{total energy spent}} \frac{\text{(bits)}}{\text{(joule)}}$$

Key Metric: Energy Efficiency

$$\gamma = \frac{\text{\# bits relevant to my traffic density related to all traffic density problem}}{\text{energy related to all traffic density problem}} \frac{\text{(bits)}}{\text{(joule)}}$$

Symmetric

Symmetric

- Backlogged traffic
- 15, 120 second trials error bars are std. across trials
- Cumulative transmission of over 2.7 million packets

Non-Cooperative Mode

Cooperative Mode

 γ_{NC}

energy efficiency if device neither helped nor was helped by others

 γ curr

energy efficiency including the benefits and costs of cooperation

Bounded Altruism

Altruism Parameter:

$$\alpha \in [0 - 1 - \infty]$$

Selfless

Selfish

Bounded Altruism

Bounded Altruism

Cooperative Resource $\rho \in [0, 1]$

Energy Efficiency

$$ho=0$$
 Never help others

$$ho=1$$
 Help others as much as possible

YNC

$$\gamma_{\rm CURR} > \alpha \cdot \gamma_{\rm NC} \qquad \rat{\rho}$$

$$\gamma_{\rm CURR} < \alpha \cdot \gamma_{\rm NC} \qquad \rat{\phi}$$

Relay Transmission Power

Relay Transmission Power

Relay Transmission Power

Built in real-time on WARP, all in software

 $\square \alpha = 0 \qquad \square \alpha = .95$

(ns-2 simulation)

Conclusions

With PDOC, devices won't waste energy... when they decide to help someone, they likely will

With DECC, devices may get a big boost in efficiency. Or, they'll adapt to only suffer a bounded amount of harm.

Thank you