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Abstract—Practical designs of wireless full-duplex are made
feasible by reducing self-interference via active and passive
methods. However, extending the range to long-range commu-
nication remains a challenge, primarily due to residual self-
interference even after a combination of active cancellation
and passive suppression methods is employed. In this paper, we
study the factor that limits the amount of active cancellation
in current designs of full-duplex. Through an experiment, we
show that phase noise in the local oscillator limits the amount
of active cancellation of the self-interference signal. Analysing
the design proposed by [1, 2] in detail, we show that modifying
the quality of the local oscillator can significantly increase the
amount of active cancellation in full-duplex systems.

I. INTRODUCTION

Full-duplex is the modality of communication where a
node can transmit one signal and receive another signal
simultaneously on the same frequency band. Due to simul-
taneous transmission and reception, the signal being trans-
mitted interferes with the signal of interest being received
at the full-duplex node. Such interference is called self-
interference. Due to physical proximity of transmit and
receive antenna on the full-duplex node, the self-interference
is several magnitudes stronger than the signal of interest. The
main challenge in enabling full-duplex is to manage the self-
interference in such a way that ensures reliable decoding of
the signal of interest.

In practical designs of full-duplex [1–9], self-interference
is managed by reducing it by a combination of passive
and active techniques. Passive methods rely on increasing
the pathloss between the transmitter and receiver on the
full-duplex node. Active cancellation techniques employ the
knowledge of self-interference and inject a cancelling signal
to create a null for the self-interference signal. However,
experimental observations report that practical designs to
date do not eliminate the self-interference completely. In fact
[9] reports that strength of the residual self-interference even
after passive and active cancellation is used is about 15 dB
higher than the thermal noise floor. In this paper, our focus
will be to understand the factors that limit active cancellation
techniques from completely nullifying the self-interference.

The active cancellation method which cancels the self-
interference prior to digitization of the received signal is
called active analog cancellation. The active cancellation
method that cancels the received signal after digitization is

called digital cancellation. The limitation in active cancella-
tion is highlighted by two experimental observations. First
observation: In [1], the amount of active analog cancellation
is limited to 35 dB, despite the fact the active analog can-
celler in [1] does not manage to bring the self-interference
close to thermal noise floor after cancellation which begs the
question “Why is the amount of active analog cancellation
in [1] limited?”

Second observation: In [2], it is shown that when digital
cancellation is serially concatenated with active analog can-
cellation, then the amount of digital cancellation deteriorates
as the amount of active analog cancellation increases. More
specifically, the sum total of the amount of active analog
cancellation and digital cancellation is less than 35 dB,
despite the fact the self-interference after digital cancellation
is not close to the thermal noise floor. Thus, raising the
second question “Why does adding a digital cancellation
stage in concatenation with active analog cancellation not
achieve higher overall active cancellation?”

In this paper, we answer both the questions, for the active
canceller proposed and implemented by [1, 2] in two steps.
First, via an experiment, we identify that phase noise in the
local oscillator is a bottleneck that limits the amount of active
cancellation. Through the controlled experiment, we show
that even when the error in estimating the self-interference
channel is neglibly small, phase noise causes perturbations
due to which the self-interference signal and the cancelling
signal do not perfectly null one another.

Secondly, we analyse the active analog canceller archi-
tecture proposed in [1, 2] by incorporating the pertubations
due to phase noise. We compute the amount of active analog
cancellation possible in [1, 2] in presence of phase noise and
show that it closely matches the experimental observation
reported in [1, 2], thus explaining the limitation in active
analog cancellation. Further, we show the interdependence of
digital and active analog cancellation by analysing the impact
of digital cancellation on the uncanceled self-interference
after active analog cancellation. Part of the uncanceled self-
interference after active analog cancellation is due to phase
noise, which continues to remain uncanceled even after
digital cancellation because phase noise is independent of
the self-interference signal. Thus, the sum total of digital and
active analog cancellation in [2] is limited by phase noise of
the local oscillator at the full-duplex node.



II. REDUCING SELF-INTERFERENCE VIA ACTIVE
CANCELLATION

The method of actively reducing self-interference that
exploits the knowledge of the self-interference signal to
inject a cancelling signal into the received signal before the
received signal is digitized is called active analog cancella-
tion. The method of actively cancelling the self-interference
by injecting a cancelling signal after digitization of the
received signal is referred to as digital cancellation.

In this Section, first we mathematically describe the re-
ceived signal at the full-duplex node in the “conventional”
sense and then analyse the limit of the amount of active
cancellation due to estimation error. We show that estimation
error does not satisfactorily explain limitations in active
cancellation observed from experimental data in [1, 2].

A. Conventional System Model to Describe Self-Interference

In this paper, we will restrict our focus to narrowband
SISO full-duplex systems. Let N1 denote the full-duplex
node and N2 denote the node from which N1 is receiving
a signal-of-interest. Let xsi(t) and xs(t) denote the self-
interference signal and signal-of-interest. For a narrowband
SISO channel, we can assume that the self-interference
channel at node N1 is modeled as a single delay tap channel
and is denoted by hsi(t) = hsiδ(t −∆si), where hsi ∈ C is
attenuation and ∆si ∈ R+ is the delay after which the self-
interference signal xsi(t) arrives at the receiver. Similarly,
the channel from the transmitter of N2 to the receiver of
N1 is denoted by hs(t) = hsδ(t − ∆s), where hs ∈ C
and ∆s ∈ R+. The received signal at node N1, y(t), is a
combination of the self-interference signal and the signal-
of-interest and is given by

y(t) = hsixsi(t−∆si) + hsxs(t−∆s) + z(t), (1)

where z(t) is the receiver thermal noise with N(0, σ2
z)

distribution. The transmit power constraints at nodes N1 and
N2 are described by

E(|xsi(t)|2) ≤ 1; E(|xs(t)|2) ≤ 1. (2)

B. Impact of Estimation Error on Active Cancellation

The objective of active cancellation is to create a null for
the self-interference signal. Given an estimate of the self-
interference channel, ĥsi(t) = ĥsiδ(t − ∆̂si), a cancelling
signal, xc(t) = −ĥsixsi(t − ∆̂si), can be generated. Adding
the cancelling signal to the received self-interference signal
results in a residual

yres(t) = hsixsi(t−∆si)− ĥsixsi(t− ∆̂si) + z(t). (3)

Let a training sequence [s1, s2, . . . , strain] of length Ttrain,
with E(|si|2) ≤ 1, where i ∈ {1, 2, . . . , Ttrain} be used to
obtain the estimate, ĥsi(t), of the self-interference channel.
Then, it can be shown

E(|yres|2) <
5σ2

z

Ttrain
+ σ2

z . (4)
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Fig. 1. Schematic of the experiment described in Section III-A

Detailed analysis is shown in the longer version [10]. Ac-
cording to (4), the residual should decay inversely with
the length of training sequence and even with a very short
training length, say Ttrain = 5, the residual self-interference
is no more than 3 dB above thermal noise. However, the
observed phenomenon in [9], which uses the same design as
[1, 2], is that the residual self-interference is 15 dB higher
than the thermal noise which is clearly not explained by the
signal model in (1), raising a possibility of some other source
of impairment leading to a bottleneck in active cancellation.

III. IDENTIFYING PHASE NOISE AS BOTTLENECK IN
CANCELLATION

In this section, we identify the bottleneck in active cancel-
lation observed in [1, 2] by measuring the amount of active
cancellation in a controlled experiment.

A. Experiment

The steps of the whose schematic is shown in Fig. 1 are:
• A signal x(t) = ejωt is digitally generated, with
ω/2π =1MHz, and is upconverted to the carrier fre-
quency of ωc radians/sec at the transmitter Tx. Let
xup(t) denote the upconverted signal.

• The signal xup(t) is split using a 3-port power splitter
[11]. Let xup,1(t) and xup,2(t) denote the two signals
output from the power splitter.

• Using a wired connection, the signals xup,1(t) and
xup,2(t) are fed into two input ports of a vector signal
analyzer (VSA) [12]. Let the two input ports denote the
two receivers Rx1 and Rx2. Using the knowledge of ωc,
the VSA downconverts and digitizes the two received
signals, which we denote as y1[iT ] and y2[iT ].

In the above experiment i ∈ Z and T is the sampling rate
chosen to be 21.7 ns. The above experiment was conducted
using two signal sources: an off-the-shelf radio chip [13]
used in WARP [14] and a high precision Vector Signal
Generator [15]. For WARP, ωc/2π = 2.4 GHz and for the
Vector Signal Generator, ωc/2π = 2.2 GHz. In the above
experiment, let ∆1,∆2 denote the time taken for the signal to
travel from Tx to the two receivers Rx1 and Rx2 respectively.
The wires over which the signals travel were approximately
of the same length, therefore ∆1 ≈ ∆2.

B. Mimicking Active Cancellation

The transmitted signal, x[iT ], is narrowband. Therefore if
the upconversion process does not add any noise, then the
received sequences can be written as



y1[iT ] = h1e
−j(ωc+ω)∆1x[iT ] + z1[iT ] (5)

y2[iT ] = h2e
−j(ωc+ω)∆2x[iT ] + z2[iT ], (6)

where h1 and h2 are complex attenuations. Since the signals
only travel over a wire, the attenuations h1 and h2 can be
assumed to be constant. Note that, y1[iT ] and y2[iT ] are
noisy versions of same signal, x[iT ], scaled by different
quantities. Therefore, we can mimic active cancellation by
subtracting a scaled and delayed version of the y1[iT ] from
y2[iT ]. The residual after active cancellation will be

yres,d[iT ] = y2[iT ]− h(d)y1[(i− d)T ], (7)

where d ∈ Z is the delay in the number of samples, and
h(d) is the scaling as a function of the delay. Using N ∈ N
samples of the received sequences y1[iT ] and y2[iT ], the
scaling is computed as

h(d) =

∑N
i=1 y2[iT ]

′
y1[(i− d)T ]∑N

i=1 |y2[iT ]|2
. (8)

If (5) and (6) hold true and if we rewrite h(d) =
h1

h2
ej(ωc(∆2−∆1)+ωdT ) + ε, then the expected strength of the

residual signal is given by

E(|yres,d[iT ]|2)

= E(|y1[iT ]− h(d)y2[(i− d)T ]|2)

= |h2|2E(|ε|2) + E(|z1[iT ]|2 + |z2[(i− d)T ]|2)

= |h2|2E(|ε|2) + 2σ2
z . (9)

Further, it can be shown that by letting N →∞ we have

E(|yres,d[iT ]|2) =
|h1|2

|h2|2
σ2
z + 2σ2

z . (10)

For the experiment conducted |h1|2
|h2|2 ≈ 1, thus it is expected

that strength of the residual self-interference should be
approximately 3σ2

z , a quantity independent of the delay d.

C. Experiment: Results and their Explanation

In Fig. 2, we plot the amount of active cancellation as
a function of delay d measured from the experiment for
both the signal sources. For WARP as the signal source,
the amount of active cancellation is a function of the delay.
In contrast, for the Vector Signal Generator amount of active
cancellation is roughly constant as delay varies.

a) Upper bound of cancellation: From Fig. 2, we note
that for both the signal sources, the maximum active can-
cellation is around 55 dB. The limitation on the cancellation
can be explained by the dynamic range of the measurement
equipment. The data-sheet [12] of the VSA lists that it offers
a dynamic range of anywhere between 55-60 dB. Thus,
the received signals y1[iT ] and y2[iT ] themselves have an
SNR of no more 55-60 dB, thereby limiting the maximum
cancellation in the range of 55-60 dB only.
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Fig. 2. Amount of cancellation as a function of the delay for different
signal sources measured from the experiment. For WARP, even with delay
d = 100, the amount of cancellation measured is ≈35 dB

b) Phase noise explains the trend of cancellation: The
amount of cancellation measured, when WARP is used as a
signal source, reduces as the delay increases and eventually
settles down around 35 dB. Now, we will show that trend in
amount of cancellation can be explained if we consider the
presence of phase noise in the upconverted signal.

Phase noise is the jitter in the local oscillator. If the
baseband signal x(t) is upconverted to a carrier frequency
of ωc, then the upconverted signal xup(t) = x(t)ej(ωct+φ(t)),
where φ(t) represents the phase noise. While downconvert-
ing a signal, phase noise can be similarly defined. The
variance of phase noise is defined as σ2

φ = E(|φ(t)|2)
and its autocorrelation function is denoted by Rφ(.). For a
measurement equipment like VSA, the phase noise at the
receiver is small. Therefore the total phase noise in the
received signal, after downconversion, is dominated by phase
noise at transmitter, i.e., the source of the signal. In presence
of phase noise, the equations (5) and (6) can be rewritten as

y1[iT ] = h1e
−j(ωc+ω)∆1ejφ[iT−∆1]x[iT ] + z1[iT ],

y2[iT ] = h2e
−j(ωc+ω)∆2ejφ[iT−∆2]x[iT ] + z2[iT ].

For a delay d, suppose an oracle provides scaling h(d) =
h1

h2
ej(ω(∆2−∆1)+ωdT ) to subtract a delayed version of y2[iT ]

from y1[iT ], then the residual self-interference will be

yres,d[iT ]

= y1[iT ]− h(d)y2[(i− d)T ]

= h1x[iT ]e−j(ωc+ω)∆1(ejφ[iT−∆1] − ejφ[iT−∆2−dT ])

+ z1[iT ]− z2[(i− d)T ]
(a)
≈ jh1x[iT ]e−j(ωc+ω)∆1(φ[iT −∆1]− φ[iT −∆2 − dT ])

+ z1[iT ]− z2[(i− d)T ],

where (a) is valid if the phase noise is small. The resulting
strength of the residual self-interference is

E(|yres,d[iT ]|2)
(a)
≈ 2|h1|2σ2

φ(1−Rφ(dT )) + 2σ2
z ,
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Fig. 3. Block diagram representation of the active analog canceller with
used in [1, 2]

where the approximation (a) is reasonable since ∆1 ≈ ∆2.
As the delay increases, it is natural that the temporal
correlation in phase noise reduces. Therefore the amount
of cancellation, when WARP is used as a signal source,
will reduce as the delay increases which explains the trend
of cancellation in Fig. 2. Once the delay is sufficiently
large, Rφ(dT ) ≈ 0, thus the dependence of the residual on
delay will vanish. For the MAXIM 2829 transceiver used
in WARP, σφ ≈ 0.7◦. For large delay d, σφ = 0.7◦ is
equivalent to 35 dB cancellation which explains lower bound
of cancellation. Although the trend in cancellation when
the vector signal generator is used as the source does not
appear to be similar to WARP, it can be explained using its
phase noise figure. At 2.2 GHz, the vector signal generator
[15] has a phase noise variance given by σφ = 0.06◦. The
corresponding lower bound of the cancellation is ≈55 dB.
Thus, the lower bound due to phase noise is close to upper
bound of cancellation due to dynamic range limitations
of the VSA, thus there is no apparent variation in active
cancellation with varying delay.

IV. ACTIVE ANALOG CANCELLATION

Result 1: The amount of active analog cancellation in [1, 2]
limited by the inverse of phase noise variance.

We denote the phase noise in the upconvertors in the self-
interference path and the cancelling path by φsi(t) and φc(t).
Since both φsi(t) and φc(t) are phase noises in the upconvert-
ing paths, therefore we assume E(|φsi(t)|2) = E(|φc(t)|2) =
σ2
si. The phase noise at the receiver downconvertor is given

by φd(t), whose variance is given by σ2
d . The functions φsi(t)

can be correlated to φc(t), but are independent of φd(t).
In Fig. 3, we show a block diagram representation of

the active analog canceller used in [1, 2]. The impulse
response of the over-the-air channel is hsiδ(t−∆si). In [1, 2],
the cancelling signal is generated by processing the self-
interference signal in baseband prior to upconversion, which
is captured by the function f(.) shown in Fig. 3. Note that
the local oscillator in the cancelling path is independent of
the local oscillator in self-interference path, as is the case
in [1, 2], thus the phase noises φsi(t) and φc(t) are inde-
pendent. The objective of the active analog canceller is to
create a null for the self-interference. If the cancelling filter
f(t) = −hsie−jωc∆siδ(t − ∆si), then the cancelling signal
is xc(t) = −hsie−jωc∆sixsi(t−∆si). After upconversion, the
cancelling signal is given by xc(t)ej(ωct+φc(t)), and once the
cancelling signal is added to the received self-interference

signal, then the residual self-interference is given by

yres(t) = hsie
jωc(t−∆si)xsi(t−∆si)(e

jφsi(t−∆si) − ejφc(t)) + z(t). (11)

Note that, in the absence of phase noise, the residual self-
interference in (11) will be only due to receiver thermal
noise, which would imply a perfect null for the self-
interference signal. However, the presence of phase noise
results in an imperfect null. The strength of the residual self-
interference signal can be estimated as

E(|yres|2)

= E
(
|hsiejωc(t−∆si)xsi(t−∆si)(e

jφsi(t−∆si) − ejφc(t))|2
)

+ E(|z(t)|2)

= |hsi|2E(|ejφsi(t−∆si) − ejφc(t))|2) + σ2
z

(a)
≈ |hsi|2E(|φsi(t−∆si)− φc(t)|2) + σ2

z

(b)
= 2|hsi|2σ2

si + σ2
z , (12)

where (a) holds because φsi(t) << 1, φc(t) << 1, and (b)
is true since the phase noise in self-interference path and
cancelling path are independent. The amount of cancellation
is the ratio of the strength of self-interference before cancel-
lation to the strength of self-interference after cancellation
which is |hsi|2

2|hsi|2σ2
φ+σ2

z
≤ 1

2σ2
φ

. Plugging in the variance of
phase noise, σφ = 0.7◦, for the MAXIM 2829 radio used in
WARP, we obtain an upper bound of cancellation of 35 dB,
which is very close to the reported cancellation numbers in
[1]. The amount of active analog cancellation as a function
of phase noise variance is plotted in Fig. 4, which shows
that reducing phase noise in local oscillator can significantly
improve the amount of active analog cancellation.
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In an alternate design, a single local oscillator can up-
convert both the self-interference signal and the cancelling
signal. The block diagram of an active analog canceller with
a single local oscillator is shown in Fig. 5. Assuming perfect
knowledge of the self-interference channel, the residual self-
interference is

yres(t) ≈ hsie
j(ωc(t−∆si))xsi(t−∆si)(φsi(t−∆si)−

φsi(t)) + z(t) (13)

and the strength of the residual self-interference is

E(|yres(t)|2) ≈ 2|hsi|2σ2
si(1−Rφ(∆si)) + σ2

z . (14)

In (13), the phase noises in the self-interference path and
cancelling path go through different delays, thus resulting
in an imperfect null for the self-interference signal. The
amount of active analog cancellation can be bounded above
as |hsi|2

2|hsi|2σ2
si(1−Rφ(∆si))+σ2

z
≤ 1

2σ2
si(1−Rφsi (∆si))

. The temporal
correlation in phase noise aids in reducing the strength of the
residual, thereby increasing the amount of cancellation com-
pared to the case when the local oscillators are independent.
To plot the amount of active analog cancellation possible, if
a single local oscillator is used, we choose a representative
delay of ∆si = 42ns and MAXIM 2829 radio in WARP
as the tranciever. From the measurements in Section III, we
plot and observe in Fig. 4 that use of a single local oscillator
for upconverting both self-interference and cancelling signal
can increase the amount of cancellation by 10 dB.

V. DIGITAL CANCELLATION

Result 2: The sum total of the amount of cancellation, for
serially concatenated active analog and digital stages of
cancellation, is bounded above by the inverse of the variance
of phase noise of the local oscillators.

For brevity, we will restrict the discussion to designs
of active analog cancellers with independent local oscil-
lators in self-interference and cancelling paths. However,
the arguements easily extend to designs with a single local
oscillator. The digital canceller operartes on the residual
self-interference after active analog cancellation. If the ac-
tive analog canceller has perfect knowledge of the self-
interference channel, then the residual self-interference after
active analog cancellation is given by (11), which after
downconversion can be approximted as

yres[iT ] ≈ hsie
−jω∆sixsi[iT −∆si](φsi[iT −∆si]−

φc[iT ])ej(φc[iT ]−φd[iT ]) + z[iT ]. (15)

From (15), we note that the residual self-interference is a
noisy version of the self-interference signal multiplied with
function of phase noise. Since phase noise is unknown and
changes every sample, yres[iT ] can be seen as a fast-fading
version of the self-interference signal. The correlation of
yres[iT ], with the self-interference signal itself is approxi-
mately zero because phase noise is zero mean and indepen-
dent of the self-interference signal. Thus, if perfect knowl-
edge of self-interference channel is available, then after ac-
tive analog cancellation the residual self-interference signal

is not correlated to the self-interference signal and hence the
digital canceller does not reduce the self-interference at all.

Digital cancellation will help cancel self-interference only
when the self-interference channel is not known perfectly. As
an example, let us assume that there is a slight error in the
knowledge of the delay of the self-interference channel. Let
ĥsi(t) = hsiδ(t − τ), where (∆si − τ) denotes the error in
the knowledge of delay. Then, the residual self-interference
in digital baseband is given by

yres[iT ] ≈ hsie
−j(ω∆si+φc[iT ]−φd[iT ])(xsi[iT − ∆si] − xsi[iT − τ ]

+xsi[iT − ∆si](φsi[iT − ∆si] − φc[iT ])) + z[iT ].

The strength of the residual self-interference before digital
cancellation is 2|hsi|2(1 − Rx(∆si − τ) + σ2

φ) + σ2
z . The

digital canceller can reduce the self-interference by using
−hsie−jω∆si(xsi[iT − ∆si] − xsi[iT − τ ]) as the cancelling
signal. After digital cancellation, the strength of residual self-
interference is 2|hsi|2((1−Rx(∆si − τ))(σ2

si + σ2
d) + σ2

φ) +
σ2
z . Since the variance of phase noise is much smaller than

unity, the digital canceller can reduce the strength of the
residual self-interference by choosing appropriate cancelling
signal. However, note that even after digital cancellation the
strength of the residual self-interference is lower bounded by
2|hsi|2σ2

si + σ2
z , which we recall is the strength of residual

self-interference signal if the estimation error is zero.
Digital cancellation manages to cancel only the part of

the residual self-interference which is correlated to the self-
interference signal itself. The sum total of active analog and
digital cancellation is upper bounded by 1

2σ2
si

. Thus, as the
amount of active analog cancellation increases, the amount
of digital cancellation deteriorates.
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