Networking on VWARP

Chris Hunter
Rice University

WARP Workshop
March 23, 2007

WARP

Some Perspective - The
OSI| Model

PR i
\ 1)
L

|
i
AL -
——

=

c
dc
s

\
=,
T
—_—
5 =

Application frem e e e e Application
Fresentation e Fresentation
SEession B SESSion
Transport SRR T Transport
R MNetwork

Metwiork SR
; - DataLink

Diatalink B
Fhyszical ST T S S Physical

I/

gooofococ o1 110001010 0000 11100 1o o1 ooaca 1101 1oadt 110100, .

Source: http://lupload.wikimedia.org/wikipedialen/flff/Osi_model_trad.jbg

Some Perspective
OSI| Model

r:f' “}“

I'-_"_I"_ _|I-|.|.
=

==

Application Application

Fresentation Fresentation

Session R Session
Transport SRR T Transport WARP Can
Metwork S Metwark

DatalLink DataLink dO them a"

e e e Fhysical

Physical fom e oo e oo S

I/

Oooofococ o1 1ooo oo odao oo o o ooacar 1o 1 1oad 1 10100. .

Source: http://lupload.wikimedia.org/wikipedialen/flff/Osi_model_trad.jbg

The OSI Model

Source: http://lupload.wikimedia.org/wikipedialen/flff/Osi_model_trad.jbg

The OSI Model

Our Focus: Medium Access Control

Source: http://lupload.wikimedia.org/wikipedialen/flff/Osi_model_trad.jbg

The OSI Model

¢ Why!

® Many interesting research problems: mesh
networks, MIMO, cross-layer gains, etc.

® All commercial 802.1 1| chipsets are closed

Source: http://lupload.wikimedia.org/wikipedialen/flff/Osi_model_trad.jbg

Qutline

Overview of Medium Access Control
Design Realization

WARPMAC Framework

Detailed Example

Lab Exercises

Medium Access

Control Overview

What is a MAC?

What is a MAC?

What is a MAC?

What is a MAC?

What is a MAC?

What is a MAC?

What is a MAC?

Received a jumbled

X packet... infer a packet
collision

What is a MAC?

Received a jumbled

x packet... infer a packet
collision

What if we ACK every
@ transmit, and

retransmit when we
receive no ACK!?

What is a MAC?

What is a MAC?

What is a MAC?

What is a MAC?

What is a MAC?

What is a MAC?

What is a MAC?

What is a MAC?

What is a MAC?

What is a MAC?

What is a MAC?

Random Backoffs

e PROBLEM:

Retransmissions can
collide ad infinitum!

® SOLUTION: Wiait a
random amount of time

before a retransmit Contention Window
INCreases over time

— |

Other Important
Details

® Carrier Sense Multiple Access (CSMA)
® |isten to the medium before sending

® Request to Send / Clear to Send (RTS/CTYS)

® ‘‘Reserve” the medium with a short
packet before sending a long one

Design Realization

Design Realization

Hardware Agnostic
State Machine

WARPMAC
Framework

WARP
Hardware

® Program high-level
MAC behavior
independent of
hardware

Use the
WARPMAC
framework to

stitch the MAC to
hardware

Design Realization

® “Driver” analogy is not
entirely accurate

WARPMAC

Framework ® No way to “lock™ the

framework and have it
support all possible
future MAC layers

Design Realization

® “Driver” analogy is not
entirely accurate

WARPMAC

Framework ® No way to “lock™ the

framework and have it
support all possible
future MAC layers

Solution: WARPMAC must grow with new algorithms

WARPMAC

Framework

WARPMAC

T PowerPC

l FPGA Fabric

High-Level
Functions

Low-Level
Functions

Drivers

PHY

WARPMAC

Current Offering:

® (Custom SISO & MIMO
OFDM Transceivers

® Flexible data rate
starting at | 5Mbps

® Hardware CRC

® Hardware CSMA

WARPMAC

In General:

e SISO/MIMO, wide/
narrow band are all
possible

WARPMAC

PHY Driver:

Configure constellation
size

® Thesholds in packet
detection, automatic gain
control, cross- Difvare
correlation in receiver

“Start” and “Stop” the
PHY

WARPMAC

Radio Controller Driver:

® Set center frequency

® Switch from Rx to Tx mode Difvare
and vice versa

WARPMAC

® Wraps driver calls for another
layer of abstraction

Low-Level

® For example: Functions

warpmac_sendOfdm(myPacket)

puts radio into transmit mode,
loads payload into PHY, begins
transmit

WARPMAC

Interrupt Handling:

® Register functions to be called
upon: Low-Level
Functions
- Reception of “Good”
Packets

- Reception of “Bad Packets”

- Expiration of a timer

WARPMAC

Timer Control

Start a count down for a
certain number a clock L ow-Level
cycles Functions

User-registered handler
will be called upon
expiration

WARPMAC

® All the functions High-Level

necessary to implement Functions
the ALOHA protocol

For example, timer
control function now
abstracted to implement

binary exponential
backoff

WARPMAC

Implementing Novel

High-Level
MACs: — '

Functions

“Level” of WARPMAC to
> Low-Level

Functions

use is MAC dependent

New PHYs, MACs, and
lower-level functions will —> Drivers
be added to the WARP
repository:

— PHY
http://warp.rice.edu/trac

http://warp.rice.edu/trac
http://warp.rice.edu/trac

An example:ALOHA

® Simplest MAC

® Serves as a foundation for a large class of
other random access protocols

® The algorithm is simple:

An example:ALOHA

® Simplest MAC

® Serves as a foundation for a large class of
other random access protocols

® The algorithm is simple:

Packet to send? Just send it

An example: ALOHA

® Simplest MAC

® Serves as a foundation for a large class of
other random access protocols

® The algorithm is simple:

Packet to send? Just send it

Received a packet! Send an ACK

An example:ALOHA

® Simplest MAC

® Serves as a foundation for a large class of
other random access protocols

® The algorithm is simple:

Packet to send? Just send it

Received a packet! Send an ACK

Received no ACK!? Backoff and resend

An example:

Packet to send?

/ Transmit /
Pac?ket /

YES

‘ Enter Timeout

Received a
packet?

Passed CRC?

Addressed to me?

Type of Packet

v

v

Timer Expired?

Type of Timer

Timeout

v

7

Re-
transmit

/ Enter Backoff

—

ACK

Transmit / Clear Timeout

Transmit States

Receive States

Timer States

An example:ALOHA

Received a

Packet to send? Timer Expired?

packet?

/ Transmit / Passed CRC? Type of Timer

Packet /

YES Backoff

Timeout

Y

Y

‘ / Re-
) 2
Enter Timeout Addressed to me* el /

Enter Backoff

Transmit .
47/ ACK / Clear Timeout

Type of Packet Transmit States

Receive States

* * Timer States

An example:ALOHA

Implicit Hardware Requirement:
a PHY transmitter

An example:

Packet to send?

/ Transmit /
Pa<?ket /

YES

‘ Enter Timeout

Received a
packet?

Passed CRC?

Addressed to me?

Type of Packet

Y

Timer Expired?

Type of Timer

Backoff Timeout

Y

-7

Re- . / Enter Backoff
transmit

—

Transmit .
ACK / Clear Timeout

Transmit States

Receive States

Timer States

An example:ALOHA

Implicit Hardware Requirement:
a PHY receiver

An example:

Packet to send?

/ Transmit /
Pagket /

YES

‘ Enter Timeout

Received a
packet?

Passed CRC?

Addressed to me?

Type of Packet

v

v

Timer Expired?

Type of Timer

Backoff Timeout

Y Y

-7

Re- . Enter Backoff
transmit

—~

Transmit .
ACK / Clear Timeout

Transmit States

Receive States

Timer States

An example:ALOHA

Implicit Hardware Requirement:
a timer

An example:

Packet to send?

/ Transmit /
Pac?ket /

YES

‘ Enter Timeout

Received a
packet?

Passed CRC?

Addressed to me?

Type of Packet

v

v

Timer Expired?

Type of Timer

Timeout

v

7

Re-
transmit

/ Enter Backoff

—

ACK

Transmit / Clear Timeout

Transmit States

Receive States

Timer States

Hardware Requirements

Packet to send?

Transmit

Received a

packet?

Packet

Enter Timeout

Passed CRC?

Addressed to me?

Type of Packet

Data

v

Y

Timer Expired?

Type of Timer

Timeout

i

transmit

Enter Backoff

Transmit
ACK

Clear Timeout

Transmit States

Receive States

Timer States

Hardware Requirements

~

(PowerPC

Packet to send? > RS:?::Z;?, a Timer Expired?

Transmit
Packet

Passed CRC? Type of Timer

Backoff | Timeout

v v

Enter Timeout Addressed to me? —a Enter Backoff
transmit
]

Type of Packet Transmit States

Receive States
Data

* * Timer States
Transmit)
7 ACK / Clear Timeout

Hardware Requirements

~

Transmitter

Receiver

(PowerPC

y
<

Type of Timer

Timeout

v

~

Enter Backoff

Transmit States

Receive States

Timer States

-

Hardware
Timer

Ethernet

Hardware Requirements

~

~

(PowerPC

Hardware
Tra n S m itte r Packet to send? NO 1 NO e A0 Timer Expired? T i m e r

Ethernet

Receiver

Interrupt Controller

Hardware Platform

Hardware Platform

(PowerPC

PHY Hardware
Transmitter . Timer

] Ethernet
Receiver

Transmit
ACK

Interrupt Controller

Hardware Platform

Radio
Controller

(PowerPC

. J

PHY Hardware
4) Transmitter i Timer

Packet
Detection

. J

] Ethernet
Receiver

4)

Transmit
ACK

Automatic
Gain Interrupt Controller

Control

Hardware Platform

Radio Push-
Controller buttons

(PowerPC

. J

PHY Hardware
(") Transmitter i Timer

Packet
Detection

. J

] Ethernet
Receiver

4)

Transmit
ACK

Automatic
Gain Interrupt Controller RS232

Control Serial

Radio
Controller

Hardware Platform

PowerP

. J

4)

Packet
Detection

PHY
Transmitter

Control Code

. J

4)

Automatic
Gain
Control

Receiver

Hardware
Timer

Push-
buttons

Transmit
ACK

Ethernet

Interrupt Controller

RS232
Serial

Radio
Controller

Hardware Platform

PowerP

\ J

(")

Packet
Detection

PHY
Transmitter

\ _/

4)

Automatic
Gain
Control

Receiver

Control Code

Hardware
Timer

Push-
buttons

Ethernet

Transmit
ACK

J

Interrupt Controller

Processor Busses (OPB/PLB)

RS232
Serial

One extreme: Hide the Hard Stuff

WARPMAC

Received a

”
Packet to send? packet?

Timer Expired?

Transmit >
f Packet ; — Passed CRC? ypaotiime.

YES Backoff | Timeout

\ A
Re-

Enter Timeout Addressed to me? . Enter Backoff
transmit

Type of Packet

I:I Timer States

Transmit 4
07/ ACK / Clear Timeout

Somewhere in between

WARPMAC

Received a

”
Packet to send? packet?

Timer Expired?

Transmit

?
Packet Passed CRC? ypalotiime.

Timeout

v
Re-

Enter Timeout Addressed to me? . Enter Backoff
transmit

Type of Packet

I:I Timer States

Transmit 4
07/ ACK / Clear Timeout

Detailed Example

CSMA

'WARP

N,

'WARP

X Experimental Wireless

—p> Ethernet

® |aunches the Xilinx
kernel

® Kernel will launch the
thread specified in
Software Platform
int main(){ Settings in XPS

¥l lkernel_main();
1

® For this project, that
thread is “myMac_main”

S*MYMAC_MAIN- function is instantioting the MAC framework and looping in an idle state*/f
vold* myMac_main{){

f/Read Dip Switch value from FPGA board.
£fThis value will be used as an index into the routing table for other nodes
mylD = warpmac_getMyId({);

f/Create an arbitrary address for this node
unsigned char tmpAddr[6] = {@x16,0x24,0x63,8x53,8xel,dxcl+myID};
memcpy(myAddr, tmpAddr,6);

ffF111 an arbitrary routing taoble so that nodes know each others' addresses
unsigned char 1;
for{i=0;1<16;1++){

routeTable[1].addr[@] myAddr[8];

routeTable[1].addr[1] myAddr[1];

routeTable[1].addr[2] myAddr[2];

routeTable[1].addr[3] myAddr[3];

routeTable[1].addr[4] myAddr[4];

routeTable[1].addr[5] myAddr[5]+1-myID;

FfInttialize the framework
warpmac_init{);
warpmac_setMacAddr (&myAddr);
warpmac_setMaxResend(4);
warpmac_setMax(W({4);
warpmac_setTimeout(408);
warpmac_setSlotTime(9);
warpmac_enableSequencing();

warpmac_setGoodPacketHandler{receiveGoodPacket);
warpmac_setBadPacketHandler(receiveBodPacket);

warpmac_setTimerHandler{timerExpire);
warpmac_setChannel{&);

warpmac_enableSisoMode();
warpmac_enableCSMA();

while(1){
1f(txBuffer.i1sNew==0){
warpmac_pollEthernet{ethernet_callback);
}

}
pthread_exit (NULL);

/f/Read Dip Switch value from FPGA board.
/fThis value will be used as an index into the routing table for other nodes

mylD = warpmac_getMyId({);

® Reads the value from
the dip switch on the
FPGA board for use as

identification

This function also
displays the value on
the seven-segment
isplays

/f/Create an arbitrary address for this node
unsigned char tmpAddr[6] = {@x16,0x24,0x63,8x53,8xel,dxcl+myID};
memcpy(myAddr, tmpAddr,6);

ffF111l an arbitrary routing table so that nodes know each others' addresses

unsigned char 1;
for{1=0;1<16; 14+){ .
routeTable[i].addr[8] - myAddr[07; ® Defines an arbltrar)’

routeTable[1].addr[1] myAddr[1];
routeTable[i].addr[2] - myAddr[2]; address, based on the

routeTable[1].addr[3] myAddr[3];

routeTable[1].addr[4] myAddr[4]; nOde ID

routeTable[1].addr[5] myAddr[5]+1-myID;

Specifies a crude

“routing table” to allow
nodes to communicate
with one another using
only the node IDs

® |nitializes the framework

® |[nitializes PHY, radio,AGC,
packet detection, interrupts,
etc.

® Sets specific parameters

® 4 resends

ffInitialize the fromework
warpmac_init{);
warpmac_setMacAddr (&myAddr);

warpmac_setMaxResend(4); . .
rarpTac_SeuaxRese: Maximum contention

oromac_setstotTine(s); window of 4 * (Slot-time)

warpmac_enableSequencing();

9 usec Slot-time
400 usec timeout

Enables sequencing to reduce
packet duplicates

® Sets handlers to be called on
certain events:

® Packets that pass checksum
® Packets that fail checksum
® Timer expiration
® Sets specific parameters
® Sets the channel of operation

warpmac_setGoodPacketHandler{receiveGoodPacket); ® EnableS SISO OperatiOn Of
warpmac_setBadPacketHandler(receiveBodPacket); .
the MIMO core (MIMO is

warpmac_setTimerHandler(timerExpire); Sti” in develcpment)

warpmac_setChannel{&);

warpmac_enableSisoMode();
warpmac_enableCSMAC);

® Enables hardware carrier-
sensing

® |oop forever, polling
ethernet when packet has
been freed

® isNew specifies whether
or not the packet is still
undergoing
retransmissions

® At this point, we are in the
“idle” state, ready to process
a number of cases

while(1){
1f(txBuffer.i1sNew==0){
warpmac_pollEthernet{ethernet_callback);
}
}
pthread_exit (NULLD);
}

Case |:

Packet received from Ethernet

int* ethernet_callback{Xuint® * frame, Xuint32 length){
/*This function is called by the ethernet MAC drivers

when a packet i1s available to send. This function fills ® A”Ocates memory in the

the Macframe transmit buffer with the packet and sends

o over the QTR bnk frame where the Ethernet
warpmac_allocatePayload(&txBuffer,length); .
txHEFFer‘.pktHE: ﬁ ECHHAE;{: ; 9t P&)"Oad ShOUId be COPIed

txBuffer.length = length;
txBuffer.pktType = DATAPACKET;
memcpy(txBuf fer.srcAddr ,myAddr,6); //Copy MAC address into source field

memcpy(txBuffer.destAddr, routeTable[(myID+1)%2] . addr,6); ® Fl”S |n header |nf0rmati0n

memcpy(txBuffer.data, frame, length);

® Type is marked as data

® Destination address is
hardcoded to ID to O if
node is |, and vice versa

® If the medium is idle,

® send the packet over
OFDM

® enter a timeout

Lf(warpmac_carrierSense())
warpmac_send0fdm{&txBuffer);
warpmac_setTimer(TIMEOUT);

e ® |[f the medium is busy,
warpmac_setTimer(BACKOFF);

¥

return @;

® enter a backoff

Case 2:

“Bad” packet received from
OFDM

int receiveBadPacket{Macfrome* packet) {
warpmac_incrementLEDLow();

}

® |[f we receive a packet
that fails checksum

® Blink the bottom
LEDs

® This way we can have a
visualization of channel
quality

Case 3:

“Good” data packet received
from OFDM

int receiveBadPacket{Macfrome* packet) {

}

imt

warpmac_incrementLEDLow();

recelveboodPacket{Macframe* packet) {

/*This function processes the received packet to see 1f 1t
wos addressed to this node, and sends an ACK 1f it 1is a
data packet. Also, i1t pushes the received packet out to
ethernet.*/

warpmac_incrementLEDHLgh();

/fIMPORTANT NOTE: Ewen though this function is passed a Macframe structure,
/fthe data field is not wvet filled. The user's MAC should process the packet
/fbased on the header information, send out an ACK if necessary, and then
/fcopy the payload out of the PHY with the warpmac_writePocket command.

1f{warpmac_addressedToMe(packet)){
Macframe ackPacket;
switch{packet-=pktTyped{

case DATAPACKET:
ackPacket.pktRev = ACKMAC;
ackPacket.length = @;
ackPacket.pktType = ACKPACKET;
memcpy{ackPacket . srcAddr,myAddr,6);
memcpy{ackPacket .destAddr, packet-=srcAddr,6);

warpmac_send0fdm{&ackPacket);
warpmac_allocatePayload{packet, packet-=1length);
warpmac_copyPayload{packet);
warpmac_sendEthernet(packet);
warpmac_freePayload{packet);

brealk;

Blink the top LEDs

If destination address is
equal to my source
address

® Create an
acknowledgment and
send it

Allocate space for
the payload, copy the
payload, send it over
Ethernet, and free
the allocated space

Case 4:

“Good” acknowledgment
backet received from OFDM

Blink the top LEDs

int receiveBadPacket{Macfrome* packet) {
warpmac_incrementLEDLow();

}
int receilveboodPacket{Macframe* packet) { If deStination add ress is

/*This function processes the received packet to see 1f 1t

was addressed to this node, and sends an ACK if it 1z a equal to my Sou rce

data packet. Also, i1t pushes the received packet out to
ethernet.*/ address

warpmac_incrementLEDHLgh();
/fIMPORTANT NOTE: Ewen though this function is passed a Macframe structure,
/fthe data field is not wvet filled. The user's MAC should process the packet

/fbased on the header information, send out an ACK if necessary, and then . .
® |f a timeout is

/fcopy the payload out of the PHY with the warpmac_writePocket command.

1f{warpmac_addressedToMe(packet)){ C u rre ntly ru n n i ng

Macframe ackPacket;

switch{packet-=pktType){ (i.e.’ the node is

case ACKPACKET:
if(warpmac_inTimeout{)){

warpmac_clearTimer{ TIMEOUT); Waiting On a,n ACK)

warpmac_freePayload(&txBuffer);

FfDelay 1s necessary to give receiver time to push packet over ethernet...
ffthis will be removed when DMA 1s implemented

| leenizs; ® Stop the timer

break;
Free the
transmitted packet
from further
retransmits

Wiait for the other
node to get ready

Case 5:

limeout timer expires

int timerExpire(unsigned char timerType){
/*This function i1s responsible for handling TIMEOUTs and BACKOFFs.
It 1s registered using the warpmoc_setTimerHandler function 1in
myMac_main. The job responsibilities of this function are to:
-increase the contention window upon the expiration of a TIMEOQOUT
-initiote a BACKOFF timer upon the expiration of a TIMEOUT
-retransmit a packet upon the expiration of a BACKOFF*/
int stotus;

switch({timerType){
case TIMEOUT:
1f(txBuffer.isNew){
status = warpmac_incrementResend(EtxBuffer); ® |ncr~ement the
1f(status == @){
| return ; resend field of the

warpmac_setTimer(BACKOFF); PaCket

return @;

break; ® Enter a backoff

Case 6:

Backoff timer expires

int timerExpire(unsigned char timerType){
/*This function i1s responsible for handling TIMEOUTs and BACKOFFs.
It 1s registered using the warpmoc_setTimerHandler function 1in
myMac_main. The job responsibilities of this function are to:
-increase the contention window upon the expiration of a TIMEOQOUT
-initiote a BACKOFF timer upon the expiration of a TIMEOUT
-retransmit a packet upon the expiration of a BACKOFF*/
int stotus;

® |f the medium is
free

® Send it over
OFDM

® Enter a timeout
case BACKOFF:

LF(warpmac_carrierSense(}){ //This 1s somewhat of an overkill ® Otherwise start
warpmac_send0fdm{&txBuffer); ’

warpmac_setTimer (TIMEQUT); anOther timeout

}
else{
warpmac_setTimer(BACKOFF);
}
break
return @;

}

Labwork

Packet from
Ethernet?

Send to OFDM

Packet from
OFDM?

Send to Ethernet

Node 16 192.168.1.16

 ———————————————

192.168.1.5

192.168.1.2
e ————

192.168.1.3

WL UDP Audio

uniMac

e @ o o
e wo - -9

3

e |
T P 0 ® | Vi ® | Fanm ¥ |

AR

HEJ11-24580E

HALO

Most Significant Bit (MSB)

:_-]i

o,

Least Significant Bit (LSB)

uniMac Lab

Packet from
Ethernet?

Send data to
known TX via
OFDM

Packet from
OFDM?

Addressed to me?

Send ACK to
known TX via
OFDM

Send data to
ethernet

lemmingMac Lab

|'

|'cl;|| l

II III | Illlll|
IIIIIII
|

Illlllllll

[IllrI
III II II|II
w.' |

i
||I ||:|I'l| IHI

|

y LR

i |f IIII
I
I

-
[]

lemming

Packet from
Ethernet?

Send data to
known TX via
OFDM

Packet from
OFDM?

Addressed to me
or broadcast?

Send ACK to
known TX via
OFDM

Send data to
ethernet

Switch Channel

