Logistics

® Review forms
® Contacts at Xilinx
o XUP
® Wireless group in PSG
® Contacting us
® Support & technical questions

® http://warp.rice.edu/forums/

® Hardware sales

® warp-project@rice.edu

http://warp.rice.edu/forums/
http://warp.rice.edu/forums/
mailto:warp-project@rice.edu
mailto:warp-project@rice.edu

Today’s Agenda

Questions from yesterday!?

Networking on VWARP talk

Lab 4 - Simple “MAC” layer
Lab 5 - Unidirectional MAC
Lunch

Lab 6 - Channel-hopping MAC
Workshop wrap-up

Physical Layer Basics

Simple Wireless Node

Packet |

sSource

Packet ||
Sink

Wireless
Transmitter

Wireless
Recelver

| _
=

Radio

Physical Layer Basics

Simple Wireless Node

Packet
Source

—

Packet
Sink

—

\Somebody Else’s Problem /

Network Layer Basics

Simple Wireless Node

Packet
Source

—

Packet
Sink

—

\Somebody Else’s Problem /

Network Layer Basics

Simple Wireless Node

Packet
Source

—

Packet
Sink

—

Targeting WARP Hardware

(Understanding the Development Environment)

FPGA (Xilinx XC2VP70)

CUSTOM
HIGH-LEVEL
APP. CODE

CUSTOM
LOW-LEVEL
DRIVER CODE

(PowerPC)

EMBEDDED PROCESSOR

WARP/XILINX SUPPORT SOFTWARE
(LIBRARIES, DRIVERS, ETCETERA)

STANDARD
BUSES
(PLB, OPB)

CUSTOM CUSTOM
HARDWARE IP HARDWARE IP
(GENERATED) (HAND-CODED)

FPGA FABRIC

AND ARITHMETIC UNITS

EXISTING HARDWARE IP
(RADIO CONTROLLER, OFDM TX/RX, ETC.)

FPGA (Xilinx XC2VP70)

CUSTOM
HIGH-LEVEL
APP. CODE

CUSTOM
LOW-LEVEL
DRIVER CODE

EMBEDDED PROCESSOR

(PowerPC)

WARP/XILINX SUPPORT SOFTWARE
(LIBRARIES, DRIVERS, ETCETERA)

Today’s exercises

Networking on VWARP

Chris Hunter
Rice University

WARP Workshop
November 2, 2007

WARP

Some Persp
OSI| Model

A ?saa Fﬁzf »
‘) J | ('}
N/ e
Application - o e Application
Presentation - - Presentation
Session gt Session
Transport - e Transport
Network = minegl Network
DataLink - e DataLink
Physical - Physical
0 i
1 1
1 0

ective

- The

WARP can
do them all

0000100001011110001010100001111010111010100000111011110001110100.....

Source: http://lupload.wikimedia.org/wikipedialen/flfflOsi_model_trad.jbg

The OSI Model

Our Focus: Medium Access Control

Source: http://lupload.wikimedia.org/wikipedialen/flfflOsi_model_trad.jbg

The OSI Model

¢ Why!

® Many interesting research problems: mesh
networks, adaptive rate, cross-layer gains, etc.

® All commercial 802.1 1 chipsets are closed

Source: http://lupload.wikimedia.org/wikipedialen/flfflOsi_model_trad.jbg

Qutline

Overview of Medium Access Control
Design Realization

WARPMAC Framework

Detailed Example

Lab Exercises

Medium Access
Control Overview

What is a MAC?

What is a MAC?

What is a MAC?

What is a MAC?

Received a jumbled

x packet... infer a packet
collision

What if we ACK every
@ transmit, and

retransmit when we
receive no ACK?

What is a MAC?

What is a MAC?

= C

What is a MAC?

What is a MAC?

What is a MAC?

What is a MAC?

What is a MAC?

= C

Random Backoffs

e PROBLEM:

Retransmissions can

collide ad infinitum!

® SOLUTION: Wiait a
random amount of time

— |

before a retransmit Contention Window
INCcreases over time

Other Important
Details

® Carrier Sense Multiple Access (CSMA)
® |isten to the medium before sending

® Request to Send / Clear to Send (RTS/CTYS)

® “Reserve” the medium with a short
packet before sending a long one

Design Realization

()

Design Realization

Hardware Agnostic
State Machine

WARPMAC
Framework

WARP
Hardware

® Program high-level
MAC behavior
independent of
hardware

® Use the
WARPMAC
framework to

stitch the MAC to
hardware

Design Realization

® “Driver” analogy is not
entirely accurate

WARPMAC

® No way to “lock” the
framework and have it
support all possible
future MAC layers

Framework

Solution: WARPMAC must grow with new algorithms

WARPMAC
Framework

System Diagram

User-level MAC (e.g. CSMAMAC)

WARPMAC Framework

WARPPHY Interface

PHY Timer Misc.
Driver Driver Drivers |

OPB

Custom
PHY

Radio Controller,
AGC, etc.

Custom Peripherals

Interrupt
Controller
Driver

Ethernet

PPC

MAC Driver | | |rq

Ib2opb —
S

Interrupt
Controller

PLB

BRAM Packet
Buffers

Ethernet
MAC

Xilinx Peripherals

PPC

FPGA Logic

User Code

WARPMAC

WARPPHY

Drivers

User Code

PHY Driver:

® Configure very low-level parameters

WARPMAC

® (Correlation thresholds

® FFT scaling parameters

WARPPHY

® Filter coefficients

e Etc. \
Drivers

Radio Controller Driver:
® Set center frequency

® Switch from Rx to Tx mode and vice versa

Drivers

User Code

PHY Control:

® Provides control over PHY commonalities WARPMAC

® General initialization command

® Configure constellation order WARPPHY

® “Start” and “Stop” the PHY

Drivers

Mostly PHY e

agnostic

WARPMAC

WARPPRHY
Completely PHY

dependent e

User Code

MAC Control:

® Provides control over MAC commonalities

WARPMAC

® Timers for timeouts, backoffs, etc.

® Carrier-sensing functions

WARPPHY

® Register user callbacks to ISRs

e Etc. \
Drivers

User-level MAC Algorithms: User Code

® High-level MAC algorithms

® Some examples so far: WARPMAC

® Aloha

® Carrier-sensing MAC WARPPHY

® Opportunistic Auto-Rate (OAR)

e MAC Workshop Exercises Drivers

An example:ALOHA

® Simplest MAC

® Serves as a foundation for a large class of
other random access protocols

® The algorithm is simple:

Packet to send!? Just send it
Received a packet! Send an ACK

Received no ACK!? Backoff and resend

An example:ALOHA

Received a

?
Packet to send” packet?

Timer Expired?

Passed CRC?

Type of Timer

Transmit / >l < NO
Packet /

YES

. NO
Enter Timeout >l

Timeout

v

4% e . / Enter Backoff
transmit

Addressed to me?

Type of Packet Transmit States

Receive States

* * Timer States
Transmit .
47/ ACK / Clear Timeout

An example:ALOHA

Implicit Hardware Requirement:
a PHY transmitter

An example:ALOHA

Implicit Hardware Requirement:
a PHY receiver

An example:ALOHA

Implicit Hardware Requirement:
a timer

An example:ALOHA

Received a

?
Packet to send” packet?

Timer Expired?

Passed CRC?

Type of Timer

Transmit / >l < NO
Packet /

YES

. NO
Enter Timeout >l

Timeout

v

4% e . / Enter Backoff
transmit

Addressed to me?

Type of Packet Transmit States

Receive States

* * Timer States
Transmit .
47/ ACK / Clear Timeout

Hardware Requirements

4 N

PHY
Transmitter

PHY
Receiver

(Power'PC

~

Hardware
Timer

Interrupt Controller

Ethernet

Radio
Controller

Hardware Platform

PowerPC

\ J

(")

Packet
Detection

PHY
Transmitter

\ _/

4)

Automatic
Gain
Control

PHY
Receiver

Control Code

Hardware
Timer

Push-
buttons

Transmit
ACK

Clear Timeout

Ethernet

LEDs

\ J

Interrupt Controller

Processor Busses (OPB/PLB)

RS232
Serial

Hardware Platform

WARPMAC

)

Received a
packet?

Packet to send? Timer Expired?

Transmit
Packet

Passed CRC? Type of Timer

Timeout

v

Enter Timeout

NO Re-

transmit

Addressed to me? Enter Backoff

Type of Packet

I:I Timer States

Transmit 4
07/ ACK / Clear Timeout

Detailed Example
CSMA

Node 0

WARP

N,

'WARP

X\ Experimental Wireless

—p> Ethernet

int main(){
unsigned char antSel = 0;

//Read Dip Switch value from FPGA board.
//This value will be used as an index into the routing table for other nodes
myID = warpmac_getMyld();

//Create an arbitrary address for this node
unsigned char tmpAddr[6] = {0x16,0x24,08x63,0x53,08xe2,0xc2+myID};

memcpy(myAddr, tmpAddr,6);
//F11l an arbitrary routing table so that nodes know each others' addresses

unsigned char 1;
for(1=0;1<16;144){

routeTable[1].addr[8] = myAddr[90];
routeTable[1].addr[1] = myAddr[1];
routeTable[1].addr[2] = myAddr[2];
routeTable[1].addr[3] = myAddr[3];
routeTable[1].addr[4] = myAddr[4];

routeTable[1].addr[5]

myAddr[5]+1-myID;
}

//Initialize the framework
warpmac_init();

warpmac_setMacAddr(&myAddr);

warpmac_setMaxResend(8);
warpmac_setMaxCW(5);
warpmac_setTimeout(168);
warpmac_setSlotTime(9);

warpmac_setRxBuf fer(&rxBuffer,d);
warpmac_setTxBuffer(l);

memcpy(txBuf fer.header.srcAddr ,myAddr,6);
warpmac_setGoodPacketHandler(receiveGoodPacket);
warpmac_setBadPacketHandler(receiveBadPacket);
warpmac_setTimerHandler(timerExpire);

warpmac_setEmacHandler(ethernet_callback);

warpmac_setChannel(GHZ 2 .8):

//Read Dip Switch value from FPGA board.
//This value will be used as an index into the routing table for other nodes
myID = warpmac_getMyld();

® Reads the value from
the dip switch on the
FPGA board for use as

identification

® This function also
displays the value on
the seven-segment
displays

//Create an arbitrary address for this node
unsigned char tmpAddr[6] = {0x16,0x24,0x63,0x53,0xe2,0xc2+mylD};

memcpy(myAddr, tmpAddr,6);

//F1ll an arbitrary routing table so that nodes know each others' addresses
unsigned char 1;

for(1=0;1<16;144){ 1
loutlTabll[i].addr[@] myAddr[8]; ® Deﬁnes an arbltra’ry

routeTable[1].addr[1] = myAddr[1];

routeTable[i].addr[2] = myAddr[2]; address, based on the
routeTable[1].addr[3] = myAddr[3];

routeTable[i].addr[4] = myAddr[4]; node |ID

routeTable[1].addr[5] myAddr[5]+1-myID;

® Specifies a crude
“routing table” to allow
nodes to communicate
with one another using
only the node IDs

® |nitializes the framework

® |nitializes PHY, radio,AGC,
packet detection, interrupts,
etc.

® Sets specific parameters

® 8 resends

//Initialize the framework
warpmac_init();

warpmac_setMacAddr (&myAddr); () MaX|mum Contentlon
warpmac_setMaxResend(8); 1 % 11
war*zmaz_sthaxC'z(g); WIndOW Of 5 (SIOt tlme)

warpmac_setTimeout(160);
warpmac_setSlotTime(9);

® |60 usec timeout

® 9 usec Slot-time

in

//Initialize the framework
warpmac_init();

warpmac_setMacAddr(&myAddr);

warpmac_setMaxResend(8);
warpmac_setMaxCW(5);
warpmac_setTimeout(160);
warpmac_setSlotTime(9);

® Tells WARPMAC to receive

wireless packets into a
particular buffer

e Tells WARPMAC to send

wireless packets from a
warpmac_setRxBuf fer(&rxBuffer,d); P&I’thUl&I" buffer

warpmac_setTxBuffer(l);

memcpy(txBuf fer.header.srcAddr,myAddr,6);

warpmac_setGoodPacketHandler(receiveGoodPacket); ® RegISterS user Interrupt
warpmac_setBadPacketHandler(receiveBadPacket); .
warpmac_setTimerHandler(timerExpire); hanC”eI"S Wlth the

warpmac_setEmacHandler(ethernet_callback);

frameworks

warpmac_setRxBuf fer(&rxBuffer,d);
warpmac_setTxBuffer(l);

memcpy(txBuf fer.header.srcAddr,myAddr,6);

warpmac_setGoodPacketHandler(receiveGoodPacket);
warpmac_setBadPacketHandler(receiveBadPacket);
warpmac_setTimerHandler(timerExpire);
warpmac_setEmacHandler(ethernet_callback);

® Sets the frequency band to

802.1 1 channel 8 of the
2.4GHz band

® Enable carrier-sensing mode
of WARPMAC

® Enable the Ethernet interrupt

warpmac_setChannel(GHZ_2,8);

warpmac_enableCSMAQ) ® Set the base modulation rate
warpmac_enableEthernetInterrupt();
to QPSK (must be agreed

//Set the modulation scheme use for base rate (header) symbols .

warpmac_setBaseRate(QPSK); upon by a_” nOdeS N the
§ network)

%hl.e(l){

}

® Spins forever in a while loop,
waiting for an interrupt

Case I:
Packet received from Ethernet

® Disables the Ethernet
interrupt line until this
frame is dealt with

int ethernet_callback(Xuint32 length, char* payload){ o MEtadata and header
warpmac_disableEthernetInterrupt();
txBuffer.header.currReSend = 8; InfOI"matlon IS ﬁ”ed N

txBuffer.isNew = 1;
txBuffer.header.length = length;
txBuffer.header.pktType = DATAPACKET;

® isNew = |,sinceitisa
//Set the modulation scheme for the packet's full-rate symbols

txBuffer.header.fullRate = QPSK; new PaCkEt

//Copy in the packet's destination MAC address
//Hard-coded as this node's partner node

memcpy(txBuffer.header.destAddr,routeTable[(myID+1)%2].addr,6); ® Length, PaCket t)’pe, fU”
rate modulation order
1f(warpmac_carrierSense()){ . .
warpmac_send0fdm(&txBuffer); and the destination
) _setT (TIMEQUT);
p e MAC address are filled
else{ .
warpmac_setTimer(BACKOFF); |nt0 the header
}
return 9;

® If the medium is free, the
packet is sent and a
timeout begins

Case 2:

“Bad” packet received from
OFDM

® If we receive a packet
that fails checksum

int receiveBadPacket(Macframe* packet) { ® Blink the bottom
warpmac_incrementLEDLow(); LEDs

}

® This way we can have a
visualization of channel
quality

Case 3:

“Good” data packet received
from OFDM

int receiveGoodPacket(Macframe* packet) {

warpmac_incrementLEDHigh();

1f(warpmac_addressedToMe(packet)){
Macframe ackPacket;
switch(packet->header.pktType){

}
}

return 9;

}

case DATAPACKET:
warpmac_leftHex(packet->header.currReSend);
ackPacket.header.length = 9;
ackPacket.header.pktType = ACKPACKET;
ackPacket.header.fullRate = QPSK;
memcpy(ackPacket.header.srcAddr,myAddr,6);
memcpy(ackPacket.header.destAddr,packet->header.srcAddr,6);
warpmac_setTxBuffer(2);
warpmac_send0fdm(&ackPacket);
warpmac_setTxBuffer(l);

packet->header.currReSend = 9;
packet->1sNew = 1;
warpmac_phyInterruptClear();
warpmac_sendEthernet(packet);
packet->header.currReSend = 9;
packet->1sNew = 8;

break;

Blink the top LEDs

If destination address is
equal to my source
address and the type is
a data packet

® Create an
acknowledgment and
send it

® Send the packet over
Ethernet

Case 4:

“Good” acknowledgment
backet received from OFDM

int receiveGoodPacket(Macframe* packet) {
warpmac_incrementLEDH1gh();

1f(warpmac_addressedToMe(packet)){
Macframe ackPacket;

switch(packet->header.pktType){
case ACKPACKET:

1f(warpmac_inTimeout()){
warpmac_clearTimer(TIMEQUT);
txBuffer.header.currReSend = 9;
txBuffer.isNew = 9;

warpmac_enableEthernetInterrupt();

}

break;

}
}

return 9;

}

Blink the top LEDs

If destination address is
equal to my source address
and the type is an
acknowledgment

® |f a timeout is currently
running (i.e., the node is
waiting on an ACK)

® Stop the timer

® TJurn Ethernet
interrupts back on
(they were disabled in
the ethernet handler)

Case 5:
limeout timer expires

int timerExpire(unsigned char timerType){

int status;

switch(CtimerType){

case TIMEOUT:
1F(txBuffer.isNew){
status = warpmac_incrementResend(&txBuffer);
1f(status == 8){
warpmac_enableEthernetInterrupt();

return 9;
}
warpmac_setTimer(BACKOFF);
return 9;
}
break;

Increment the resend
field of the packet

Enter a backoff

Re-enable Ethernet
interrupts if maximum
retransmissions were
met

Case 6:
Backoff timer expires

int timerExpire(unsigned char timerType){
int status;
switch(CtimerType){

® |f the medium is
free

® Send it over
OFDM

case BACKOFF!
1f(warpmac_carrierSense()){

warpmac_send0fdm(&txBuffer); ® Enter a timeout
warpmac_setTimer(TIMEQUT);

}

else{ | ® Otherwise, start
warpmac_setTimer(BACKOFF); .

} another timeout

break;

return 9;

Exercises

noMac

Idle
Packet from NO Packet from
Ethernet? OFDM?
YES YES

Send to OFDM p———)- Send to Ethernet

Node 16 192.168.1.16

 ———————————————

Node 5 192.168.1.5

Node 2 192.168.1.2

192.168.1.4

e ————

N\
J

Node 3 192.168.1.3

WL UDP Audio

uniMac La

e @ o o
e wo - -9

3

e |
T P 0 ® | Vi ® | Fanm ¥ |

AR

HEJ11-24580E

HALO

Most Significant Bit (MSB)

:_-]i

IZ
I
I
b

Least Significant Bit (LSB)

uniMac Lab

Packet from
Ethernet?

Send data to
known TX via >
OFDM

Packet from
OFDM?

Addressed to me?

Send ACK to
known TX via
OFDM

Send data to
ethernet

- .
- __-__ _ ___ _ __-___-_
1

_;__.__”.___ ___- _
_ _q Al } :
! _L__-_ __ __-_-.___E__

ff Eh
__?
hE i

__H I __—__

hopMac Lab

Packet from
Ethernet?

YES

Packet from

Send data to
known TX via
OFDM

NO

OFDM?

Addressed to me

or broadcast?

Send ACK to
known TX via
OFDM

Send data to
ethernet

Switch Channel

